跳到主要內容區塊 :::
   
:::

  • 資料類型

    期刊論文

  • 計畫編號

  • GRB編號

  • 計畫名稱

  • 計畫主持人

  • 經費來源

  • 執行方式

  • 執行機構

  • 執行單位

  • 年度

  • 期程(起)

  • 期程(迄)

  • 執行狀態

  • 關鍵詞

    Bayesian computation,General progressive Type-II censoring,Markov Chain Monte Carlo (MCMC) method,Prediction,Simulation

  • Keywords

  • 研究主軸

  •   The Bayesian estimation and prediction problems for the linear hazard rate distribution under general progressively Type-II censored samples are considered in this article. The conventional Bayesian framework as well as the Markov Chain Monte Carlo (MCMC) method to generate the Bayesian conditional probabilities of interest are discussed. Sensitivity of the prior for the model is also examined. The flood data on Fox River, Wisconsin, from 1918 to 1950, are used to illustrate all the methods of inference discussed in this article.
top
回首頁 網站導覽 FAQ 意見信箱 EN
facebook youtube